Mice deficient in telomerase activity develop hypertension because of an excess of endothelin production.
نویسندگان
چکیده
BACKGROUND Telomere shortening has been related to vascular dysfunction and hypertension. In the present study, we analyzed the influence of telomerase deficiency and telomere shortening on arterial pressure (AP). METHODS AND RESULTS AP was evaluated in 6-month-old mice lacking the RNA component of the telomerase (terc-/-) at the first generation and third generation (G3). First generation and G3 mice showed higher AP than wild-type (WT) mice. To analyze the mechanisms involved, mean AP and vascular resistance in response to vasoactive substances were measured in G3 and WT mice. These mice showed similar responses to acetylcholine, N(G)-nitro-L-arginine methyl ester, angiotensin II, and losartan administration. Mean AP did not increase after endothelin-1 (ET-1) administration in G3 mice, but it did in WT animals. Bosentan treatment decreased mean AP only in G3 mice. Serum and urine concentrations of ET-1 were higher in terc-/- than in WT mice. Endothelin-converting enzyme (ECE-1) mRNA expression was higher in terc-/- animals than in the WT group. FR901533, an ECE antagonist, decreased blood pressure in conscious G3 mice. Studies in mouse embryonic fibroblasts from G3 mice suggest that ECE-1 overexpression could be mediated by reactive oxygen species in an AP-1-dependent mechanism, in which some kinases such as PI3-kinase, Akt, erk1/2, and Jun Kinase could be involved. An increased activity of nicotinamide adenine dinucleotide phosphate oxidase seems to be the main source of reactive oxygen species. CONCLUSIONS Mice lacking telomerase activity show hypertension as a result of an increase in plasma ET-1 levels, which is a consequence of ECE-1 overexpression. A direct link between telomerase activity and hypertension is reported.
منابع مشابه
Endothelin 1 activation of endothelin A receptor/NADPH oxidase pathway and diminished antioxidants critically contribute to endothelial progenitor cell reduction and dysfunction in salt-sensitive hypertension.
Circulating endothelial progenitor cells (EPCs) are reduced in hypertension, which inversely correlates with its mortality. Deoxycorticosterone acetate (DOCA)-salt hypertension features elevated endothelin (ET) 1 and oxidative stress. We tested the hypothesis that ET-1 induces EPC dysfunction by elevating oxidative stress through the ET(A)/NADPH oxidase pathway in salt-sensitive hypertension. B...
متن کاملEndogenous endothelin-1 is required for cardiomyocyte survival in vivo.
BACKGROUND Endothelin-1 (ET-1) has potent vasoconstrictor and hypertrophic actions. Pharmacological antagonists of endothelin receptors attenuate cardiac hypertrophy, have been approved for treatment of pulmonary hypertension, and are under investigation for treatment of heart failure. To investigate the role of ET-1 in the heart, we created mice with cardiomyocyte deletion of ET-1. METHODS A...
متن کاملNanocurcumin-Mediated Down-Regulation of Telomerase Via Stimulating TGFβ1 Signaling Pathway in Hepatocellular Carcinoma Cells
Background: Curcumin, extracted from turmeric, represents enormous potential to serve as an anticancer agent. Telomerase is viewed as a prominent molecular target of curcumin, and transforming growth factor-β1 (TGFβ1) has proven to be a major inhibitory signaling pathway for telomerase activity. In the current study, we aimed to explore suppressive effects of nanocurcumin on telomeras...
متن کاملThe Influence of Iron Loading and Iron Chelation on the Proliferation and Telomerase Activity of Human Peripheral Blood Mononuclear Cells
Background: Iron is an essential trace element in cell proliferation. Several investigations demonstrate that iron deprivation inhibits cell proliferation. However, the impact of iron on telomerase activity of activated lymphocytes remains unexplained to date. Objective: In this study, the effect of iron on the proliferation and telomerase activity of lymphocytes stimulated by phytohemagglutini...
متن کاملResistance artery remodeling in deoxycorticosterone acetate-salt hypertension is dependent on vascular inflammation: evidence from m-CSF-deficient mice.
Deoxycorticosterone acetate (DOCA)-salt hypertension has an important endothelin-1 (ET-1)-dependent component. ET-1-induced vascular damage may be mediated in part by oxidative stress and vascular inflammation. Homozygous osteopetrotic (Op/Op) mice, deficient in macrophage colony-stimulating factor (m-CSF), exhibit reduced inflammation. We investigated in osteopetrotic (Op/Op) mice the effects ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 114 4 شماره
صفحات -
تاریخ انتشار 2006